Metformin Protects Cardiomyocyte from Doxorubicin Induced Cytotoxicity through an AMP-Activated Protein Kinase Dependent Signaling Pathway: An In Vitro Study
نویسندگان
چکیده
Doxorubicin (Dox) is one of the most widely used antitumor drugs, but its cumulative cardiotoxicity have been major concerns in cancer therapeutic practice for decades. Recent studies established that metformin (Met), an oral anti-diabetic drug, provides protective effects in Dox-induced cardiotoxicity. Met has been shown to increase fatty acid oxidation, an effect mediated by AMP activated protein kinase (AMPK). Here we delineate the intracellular signaling factors involved in Met mediated protection against Dox-induced cardiotoxicity in the H9c2 cardiomyoblast cell line. Treatment with low dose Met (0.1 mM) increased cell viabilities and Ki-67 expressions while decreasing LDH leakages, ROS generations and [Ca2+]i. The protective effect was reversed by a co-treatment with compound-C, an AMPK specific inhibitor, or by an over expression of a dominant-negative AMPKα cDNA. Inhibition of PKA with H89 or a suppression of Src kinase by a small hairpin siRNA also abrogated the protective effect of the low dose Met. Whereas, with a higher dose of Met (1.0 mM), the protective effects were abolished regardless of the enhanced AMPK, PKA/CREB1 and Src kinase activity. In high dose Met treated cells, expression of platelet-derived growth factor receptor (PDGFR) was significantly suppressed. Furthermore, the protective effect of low dose Met was totally reversed by co-treatment with AG1296, a PDGFR specific antagonist. These data provide in vitro evidence supporting a signaling cascade by which low dose Met exerts protective effects against Dox via sequential involvement of AMPK, PKA/CREB1, Src and PDGFR. Whereas high dose Met reverses the effect by suppressing PDGFR expression.
منابع مشابه
15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner
Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...
متن کاملThe Role of Protein Kinase B Signaling Pathway in Anti-cancer Effect of Rolipram on Glioblastoma Multiforme: An In Vitro Study
Introduction: The mechanism of putative cytotoxicity of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone (rolipram), a specific phosphodiesterase-4 (PDE4) inhibitor, on glioblastoma multiforme (GBM) is almost unknown. This study aimed to investigate the role of protein kinase B (Akt) pathway in the cytotoxic effect of rolipram on human GBM U87 MG cell line and tumor-initiating cells (TICs) ...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014